Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/equsorg/public_bec/includes/menu.inc).

ARC Discovery Projects: Riding a quantum wave: transport and flow of atomic quantum fluids (2015–2018)

Abstract: In our lab, we use lasers and magnetic fields to cool tiny samples of millions of atoms to temperatures a few billionths of a degree above absolute zero. At such cold temperatures they form a superfluid known as a Bose-Einstein condensate, that flows with zero viscosity. Using tailored light fields to trap and guide the atoms, we will build rudimentary atomic circuits, and coax the superfluid to flow through a channel between two reservoirs, firstly with thermodynamic gradients, and secondly by building a quantum pump. Along with computer modelling, our joint study will allow us to characterise the microscopic transport properties of superfluids, and provide us with an understanding of how to use them in atomtronic devices in the future.

Superfluid Dumbbell
Gauthier Guillaume et al, 2019
Physical Review Letters, 123, 26

We experimentally realize a highly tunable superfluid oscillator circuit in a quantum gas of ultracold atoms and develop and verify a simple lumped-element description of this circuit.

Gauthier Guillaume et al, 2019
Science, 364, 6447, pp. 1264-1267

Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters.

Rapidly scanning magnetic and optical dipole traps have been widely utilized to form time-averaged potentials for ultracold quantum gas experiments.

Rubinsztein-Dunlop Halina et al, 2017
Journal of Optics, 19, 1, pp. 13001

Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge.

The development of novel trapping potentials for degenerate quantum gases has been an important factor driving experimental progress in the field. The introduction of spatial light modulators (SLMs) into quantum gas laboratories means that a range of configurable geometries are now possible.

Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries.

Prof Halina Rubinsztein-Dunlop
Chief Investigator, Professor
Matthew Davis
Chief Investigator, Professor
Tyler Neely
ARC Future Fellow / Senior Lecturer